Research on the rapid combustion process of butane under microwave discharge

  • 1.

    Starikovskii, AY Plasma Assisted Combustion. proc. Combustion. Inst. 302405–2417 (2005).

    Item
    CASE

    Google Scholar

  • 2.

    Bromberg, L., Cohn, DR, Rabinovich, A. & Heywood, J. Emission Reductions Using Hydrogen from Plasmatron Fuel Converters. Int. J. Hydrogen Energ. 261115-1121 (2001).

    Item
    CASE

    Google Scholar

  • 3.

    Lee, DH, Kim, KT, Cha, MS & Song, YH Optimization scheme of a rotating sliding arc reactor for the partial oxidation of methane. proc. Combustion. Inst. 313343–3351 (2007).

    Item
    CASE

    Google Scholar

  • 4.

    Leonov, SB & Yarantsev, DA Plasma-induced ignition and high-velocity flux plasma-assisted combustion. Sci Plasma Sources. Technology. 16132 (2006).

    ADS
    Item
    CASE

    Google Scholar

  • 5.

    Ombrello, T. et al. Enhanced combustion via piece-stabilized non-equilibrium sliding arc plasma discharge. AIAA. J 44142–150 (2006).

    ADS
    Item

    Google Scholar

  • 6.

    Starikovsky, AY et al. Nanosecond pulsed discharges for plasma-assisted combustion and aerodynamics. J.Propuls. To be able to. 241182–1197 (2008).

    Item

    Google Scholar

  • seven.

    Hartz, CL, Bevan, JW, Jackson, MW, and Wofford, BA Innovative Surface Wave Plasma Reactor Technique for PFC Reduction. About. Science. Technology. 32682–687 (1998).

    ADS
    Item
    CASE

    Google Scholar

  • 8.

    Jasiński, M., Mizeraczyk, J., Zakrzewski, Z., Ohkubo, T. & Chang, J.-S. The destruction of CFC-11 by a microwave torch generated a nitrogen discharge at atmospheric pressure. J.Phys. D.Appl. Phys. 352274 (2002).

    ADS
    Item

    Google Scholar

  • 9.

    Uddi, M., Jiang, N., Mintusov, E., Adamovich, IV & Lempert, WR Measurements of Atomic Oxygen in Air and Two-Photon Laser-Induced Fluorescence Air/Fuel Nanosecond Pulse Discharges . proc. Combustion. Inst. 32929–936 (2009).

    Item
    CASE

    Google Scholar

  • ten.

    Ombrello, T., Won, SH, Ju, Y. & Williams, S. Enhancement of flame spread by oxygen plasma excitation. Part I: Effects of O3. Combustion. Flame. 1571906-1915 (2010).

    Item
    CASE

    Google Scholar

  • 11.

    Rao, X., Matveev, IB & Lee, T. Nitric oxide formation in a premixed flame with high level plasma energy coupling. IEEE. Trans. Plasma Sci. 372303-2313 (2009).

    ADS
    Item
    CASE

    Google Scholar

  • 12.

    Stockman, ES, Zaidi, SH, Miles, RB, Carter, CD & Ryan, MD Measurements of combustion properties in a microwave-enhanced flame. Combustion. Flame. 1561453-1461 (2009).

    Item
    CASE

    Google Scholar

  • 13.

    Chintala, N., Bao, A., Lou, G. & Adamovich, IV Measurements of Combustion Efficiency in Non-Equilibrium RF Plasma Ignited Fluxes. Combustion. Flame. 144744–756 (2006).

    Item
    CASE

    Google Scholar

  • 14.

    Lou, G. et al. Ignition of hydrocarbon and air streams premixed by a repetitively pulsed plasma with a pulse duration of the order of a nanosecond. proc. Combustion. Inst. 313327–3334 (2007).

    Item
    CASE

    Google Scholar

  • 15.

    Ogawa, S., Sakai, Y., Sato, K. & Sega, S. Influence of microwaves on methane-air laminar flames. Jpn. J.Appl. Phys. 1(37), 179-185 (1998).

    ADS
    Item

    Google Scholar

  • 16.

    Maclatchy, CS, Clements, RM & Smy, PR An experimental study of the effect of microwave radiation on a propane-air flame. Combustion. Flame. 45161–169 (1982).

    Item
    CASE

    Google Scholar

  • 17.

    Groff, EG & Krage, MK Effects of microwaves on premixed flames. Combustion. Flame. 56293–306 (1984).

    Item
    CASE

    Google Scholar

  • 18.

    Weinberg, FJ, Hom, K., Oppenheim, AK & Teichman, K. Plasma jet ignition. Nature 272341–343 (1978).

    ADS
    Item
    CASE

    Google Scholar

  • 19.

    Hammack, S., Rao, X., Lee, T., and Carter, C. Direct-coupled plasma-assisted combustion using a microwave waveguide torch. IEEE. Trans. Plasma Sci. 393300–3306 (2011).

    ADS
    Item
    CASE

    Google Scholar

  • 20.

    Hong, YC & Uhm, HS Properties of Plasma Flames Sustained by Microwaves and Hydrocarbon Combustion. Phys. Plasma 13113501 (2006).

    ADS
    Item
    CASE

    Google Scholar

  • 21.

    Bae, YS et al. Characteristics of an atmospheric pressure coaxial field structure microwave plasma torch. J. Korean. Phys. Soc. 4867 (2006).

    CASE

    Google Scholar

  • 22.

    Takita, K., Masuya, G., Sato, T. & Ju, YG Effect of radical addition on burning rate. AIAA. J 39742–744 (2001).

    ADS
    Item

    Google Scholar

  • 23.

    Shin, DH et al. A pure steam microwave plasma torch: Gasification of coal powder in plasma. Surf. Coat. Technology. 228S520–S523 (2013).

    Item
    CASE

    Google Scholar

  • 24.

    Hemawan, KW et al. Premixed flame combustion assisted by microwave plasma. Appl. Phys. Lett. 89141501 (2006).

    ADS
    Item
    CASE

    Google Scholar

  • 25.

    Wang, ZL et al. Experimental study of the influence on combustion performance of microwave plasma ignition of pulsed microwave signals. IEEE. Access. seven23951–23958 (2019).

    Item

    Google Scholar

  • 26.

    Wang, CJ & Wu, W. Roles of state-resolved OH(A) and OH(X) radicals in microwave plasma-assisted combustion of premixed methane/air: an exploratory study. Combustion. Flame. 1612073-2084 (2014).

    Item
    CASE

    Google Scholar

  • 27.

    Hwang, J. et al. Microwave assisted plasma ignition in a constant volume combustion chamber. Combustion. Flame. 16786–96 (2016).

    Item
    CASE

    Google Scholar

  • 28.

    Yu, BW et al. High-speed photographic analysis of the behavior of a microwave plasma torch source. J.Anal. Atom. Spectrum. 31759–766 (2016).

    Item
    CASE

    Google Scholar

  • 29.

    Zhang, D., Zhou, R., Yang, XQ, and Wu, SY Design of a New Dual-Port Conical Waveguide Plasma Device by Numerical Analysis. Phys. Plasma. 23073504 (2016).

    ADS
    Item
    CASE

    Google Scholar

  • 30.

    Uhm, HS Properties of plasmas generated by electrical breakdown in flames. Phys. Plasma. 64366–4374 (1999).

    ADS
    Item
    CASE

    Google Scholar

  • 31.

    Douat, C., Bocanegra, PE, Dozias, S., Robert, E. & Motterlini, R. Carbon monoxide production from a He/CO2 plasma jet as a new strategy for therapeutic applications. Plasma. To treat. Polym. 182100069 (2021).

    Item
    CASE

    Google Scholar

  • 32.

    Li, H.-Y., Huang, P.-H. & Chao, Y.-C. Microwave-induced plasma flame enhancement: role of major bath gas N2 versus Ar. Combustion. Science. Technology. 1881831–1843 (2016).

    Item
    CASE

    Google Scholar

  • 33.

    Montaser, A. & Golightly, DW Inductively Coupled Plasmas in Analytical Atomic Spectrometry. (1987).

  • Kevin A. Perras